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Abstract

This paper is predominantly a nontechnical discus-

sion of some significant aspects of the initial flight

qualification and operational maintenance of the flight

control system software for the X-29A technology

demonstrator. Flight qualification and maintenance

of complex, embedded flight control system soft-

ware poses unique problems. The X-29A technology

demonstrator aircraft has a digital flight control system

which incorporates functions generally considered too

complex for analog systems. Organizational responsi-

bilities, software assurance issues, tools, and facilities
are discussed.

Nomenclature

ACC

AHRS

AR

B/U

CCR

CL

CLP

CM

DARPA

DCL

DR

FCC

FSIM

FS/CP

automatic camber control

attitude heading reference system

analog reversion

backup

configuration change requests
control law

control law processor

configuration management

Defense Advanced Research Projects

Agency

DEC control language

digital reversion

flight control computer
function simulation

failure status/control panel
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IBIT

I/O
lOP

ISA

LVDT

MCC

OFP

PA

PAC

PCN

PDL

PLA

PL/I

Pri

Ps/Qc
RAV

SEU

SIBLINC

STR

UA

UDF

Vand V

XAIDS

initiated built-in test

input/output

input/output processor

integrated servoaetuator
linear variable differential

transformer

manual camber control

operational flight program

power approach

precision approach control

program change notice

program design language

throttle position (power lever angle)

programming language I

primary

static pressurefunpact pressure

remotely augmented vehicle

system evaluation unit

scale invert bias logic interface

console

system test report

up and away

unit development folder
verification and validation

extended aircraft interrogation and

display system

Introduction

The first X-29A airplane (Fig. 1) has successfully

completed 242 flights, proving the concept of forward-

swept wings and several other advanced aerodynamic,

structural, and avionic technologies. The X-29A

forward-swept wing technology demonstrator is an

aerodynamically unstable aircraft requiting a highly

augmented software-intensive control system to main-

tain stable flight. In addition to its aerodynamic insta-



bility, theX-29Aairplaneincorporatesthefollowing
technologies:

1. Forward-swept wing planform

2. Tailored composite wing structure

3. Variable incidence close-coupled canard

4. Multisurface control

5. Discrete variable camber

This paper will describe the initial flight quali-

fication and operational maintenance phases of the

X-29A program. The initial flight qualification phase

ended with the qualification of the software system

for first flight. The operational maintenance phase oc-

curred during the flight test program. During this phase

several groups of changes were incorporated and the

software system was requalified for flight after each

change. The flight control system, of which the soft-

ware is a part, is discussed to provide insight into the

complexity of the flight qualification tasks described.

The multiple flight control modes, flight control sys-

tem components, and digital flight control computer
architecture are also discussed.

The first flight of the X-29A airplane occurred on

December 14, 1984. Initial flight qualification in-
cluded the activities which assured that the software

to be used on first flight, integrated with aircraft sys-

tems, was safe (flight-qualified) and that initial mis-

sion requirements could be accomplished. Organiza-

tional responsibilities, the software development pro-

cess, and software assurance functions (change con-

trol, discrepancy reporting and correction, and testing)

during preparation for first flight are discussed.

Operational maintenance included the process by

which software system changes were incorporated and

the software requalified for flight during the opera-

tional phase of the program. This phase started af-

ter flight number four, when the U.S. Government

took possession of the aircraft and assumed responsi-

bility for flight safety. Operational maintenance top-

ics included changes in organizational responsibility,

software development, configuration management and

other software assurance topics, time-saving parallel

development and test activities, and the importance of

a high-fidelity simulation at the user's facility.

Some observations and recommendations are in-

cluded, based on X-29A experience in development

and maintenance of a complex software-intensive sys-

tem. Management and technical issues during ini-

tial flight qualification and operational maintenance

phases of the program are discussed.

Generic terms are used to describe the organiza-

tions involved in the X-29A program. The airframe

manufacturer was Grumman Aerospace Corp., Beth-

page, New York. The term "prime contractor" refers

to Grumman. Grumman subcontracted to Honeywell,

Inc., Minneapolis, Minnesota, for the sensor computer

subsystem which included the flight control comput-

ers (FCCs), flight software, and control system sen-

sors. The terms "subcontractor" and "developer" refer

to Honeywell. The U.S. Government is the "customer"

and "user. .... User" refers specifically to the Na-

tional Aeronautics and Space Administration (NASA),

Ames Research Center, Dryden Flight Research Facil-

ity, Edwards, California, where the flight test program
was conducted.

System Description

Flight Control System Modes

The control system modes and their options are sum-

marized in Table I. Several of the modes incorpo-

rated variable gains based on airspeed, altitude, Mach

number, and angle of attack to optimize the aircraft's

capabilities throughout the flight envelope. Normal

mode, with its subsets, was implemented in the digital

computers. Degraded modes were included to allow

the system to remain in normal mode with degraded

performance after certain failures. The name of the

direct electrical link mode is misleading because the

mode had the capability of stabilizing the aircraft dur-

ing takeoff and landing--a capability that would not

exist in a direct, unaugrnented, stick-to-surface control

system. Analog reversion (AR) was a backup mode,

implemented in the analog computers, that was capa-

ble of recovering the aircraft from anywhere in the

flight envelope. Digital reversion (DR) was a digital

backup mode, which was removed during the flight test

program. A more complete description of the X-29A

control system modes can be found in Ref. 1.

Flight Control System Components

Flight control system hardware is illustrated in

Fig. 2. The canards, flaperons, and strake flaps were

utilized for pitch control. Flaperons were also used for

roll control, and the rudder was utilized for yaw con-



trol. Crossfeeds between lateral and directional axes

were included in the control laws that coordinated the

flapcronand ruddercommands.

The flightcontrolsystemwas a triplexdigitalsys-

tem witha triplexanalogbackup system. The goal

ofthesystem,withitsassociatedfailuredetection,re-

dundancy management, and faultreaction,was topro-

videsafereturnoftheaircraftaflcrany two subsystem

failures;thatis,failoperational/failsafe.The airdata

sensors, accelerometers, and primary rate gyros were

triplex for the digital control system. A backup set of

triplex rate gyros and a triplex set of impact pressure

sensors were provided for the backup analog control

system. The backup rate gyros were used by the dig-

ital system in the event of a primary rate gyro failure.

Pilot commands utilized triplex sensors of stick and

rudder pedal positions. Single-string inputs to the con-

trol system included the attitude heading reference sys-

tem (AHRS), throttle position (PLA), and the remotely

augmented vehicle (RAV) system.

Each digital and analog computer in the flight con-

trol system outputs all surface actuator commands.

Hardware logic monitored the flight control mode and

thereby selected raw commands from either the digital

computer or the analog computer. The raw commands

were interchanged between FCCs in analog form, and

hardware logic in each FCC outputs to the actuators the
midvalue of its commands and those of the other com-

puters. Each digital computer provided an ARINC 429

bus output, which contained information on both pro-

portional and discrete internal parameters, to the data

acquisition system for downlink telemetry. Only one

digital computer provided output to the engine, while

another provided output to cockpit displays.

Digital Flight Control Computer Architecture

Each of the three identical FCC boxes contained two

digital processors and a backup analog computer. Dig-

ital computers were a derivative of an HDP-5301 pro-

cessor that had been used on several other programs.

Figure 3 shows a block diagram of the digital com-

puter system. To achieve the required throughput, dig-

ital processing in each FCC was distributed between

an input/output processor (lOP) and a control law pro-

cessor (CLP). Interface functions, performed by the

lOP using fixed-point calculations, included discrete

and analog input and output; ARINC 429 bus input

from air data sensors; ARINC 429 bus output to down-

link telemetry system; redundancy management; fail-

ure detection; fault reaction; and initiated built-in test

(IBIT). The CLP executed the control laws, calcu-

lating actuator commands and some cockpit displays

from pilot and sensor inputs, using fixed-point and

floating-point calculations. Each processor contained

2 k of random access memory and 14 k of electrically

erasable, programmable, read-only memory. Synchro-

nization and data exchange occurred between the lOP

and CLP through 1 k of common memory.

The digital system operated at an 80 Hz minor cycle,

but the majority of the computations were run at40 Hz.
All FCCs ran the same software. The three FCCs were

synchronized to real time and to each other at the be-

ginning of each minor cycle. The executive functions

were task scheduling, synchronization and data ex-

change between FCCs, and synchronization and data

exchange within an FCC. The executive used a cyclic,

single-tasking structure which facilitated timing anal-

ysis because of its invariant execution order.

Each FCC had a serial data transfer capability with
the other two FCCs. The intercom data rate was

1.0 MHz, with sending and receiving under direct con-

trol of the lOP. Sensor and pilot command inputs were

exchanged for signal selection and monitoring, so that

all FCCs used the same inputs to the control laws. Ac-

tuator commands were exchanged to assure that the

outputs from the control laws were identical, having

used identical inputs. The integrity of each data ex-

change was tested to ensure that all FCCs performed

signal selections from identical data sets.

To implement the cross-channel FCC data exchange

and synchronization, the common memory had one

word of data and a one-word software flag for each

input and output that was processed. This technique

allowed the time lag between sensor input and control

surface output to be minimized and held constant.

The computers also executed many built-in tests that

were designed to ensure that the flight control com-

puter hardware and software were performing prop-

erly. These tests were performed when the system

was powered up and operating, in both the lOP and

the CLP. A set of pilot-initiated built-in tests checked

the flight control system sensors, displays, indicators,
and actuators.

Reference 2 contains a detailed description of the

digital FCC architecture.



Initial Flight Qualification

Organization and Responsibility

The X-29A program was sponsored by the U.S. De-

fense Advanced Research Projects Agency (DARPA)

and managed by the U.S. Air Force Hight Dynam-

ics Laboratory. The aircraftwas built by theGrum-

man Aerospace Corp.,who had responsibilityfor

flightsafetyuntilthe aircraftwas deliveredto the

government. NASA's Ames-Dryden Hight Research

Facilityconductedindependentrcvicwsand analysis

of pre-dcliveryactivitiesand participatedin aircraft

ground tests.Grumman subcontractedtoHoneywell,

Inc.,forthe sensorcomputer subsystem,which in-

cludedtheFCC hardware and software.Tic prime

contractorwas responsiblefor providingthe cus-

tomer with a flight-qualifiedaircraft,includingFCC

flight software.

Software Development

It is not economically feasible to replace the advan-

tage of a well-managed, structured software develop-

mcnt approach with testing; it would require an infi-

nite amount of testing to gain confidence in software

produced using a poor development process. The sub-

contractor was responsible for the software develop-

ment process, with formal design reviews held by the

prime contractor and customer. The organizational

structure of the software development group consisted

of two major subgroups. One group was responsible

for the control law implementation, the other for the

input/output (I/O) implementation. Both groups had

lead engineers who reported to a software manager re-

sponsible for the technical and administrative aspects

of the software development process. It is custom-

ary in complex flight-critical applications to assign the

functions of design, code, and test to separate groups;

however, due to resource constraints, all of these func-

tions were performed by the same personnel.

A major factor in developing quality software is

the use of software standards and practices during

software design, code, and test. The software de-

velopment guidelines used were internal subcontrac-

tor guidelines based on DOD-STD-2167. Figure 4

presents an overview of the subcontractor's software

development process and illustrates how the develop-

ment process was partitioned into distinct phases. The

figure also shows the relationship between the hard-

ware and software dcvclopmcnt. The process is shown

to proceed sequenti',dly through the phases, but itera-

tions to the requirements, design, code, and test pro-
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cedures did take place. Once a baselined phase was

complete and a change had occurred, the requirements

and the software design were updated, and, if already

baselined, the code and test procedures were also up-

dated and reexecuted as part of the phase then currently

in progress. Reliable software was obtained by imple-

menting good engineering discipline in the software

development process.

A major challenge of any software-intensive devel-

opment effort is the apparently never-ending changes

to requirements. Fundamental to the design of a flight

control system for a technology demonstrator is the

ability to accommodate changes in the requirements

with minimum resources. The deficiency in most soft-

ware development life cycles is the assumption that

a perfect set of requirements exist before the design

phase begins. The subcontractor contended with this

deficiency in three major ways:

I.

,

.

Requirements the X-29A airplane had in com-

mon with other digital flight control system ar-

chitectures were applied to minimize the need

to reestablish those requirements and to take

advantage of off-the-shelf software and hard-

ware design.

Experienced systems and lead software engineers

reviewed customer and mission requirements and

determined what the customer "system objec-

tives" were and translated those objectives into

a formal design specification. The translation

process consisted of written text in block dia-

gram form and was based on their systems and

software experience and close interaction with

the customer. The block diagrams were espe-

cially useful in the test and maintenance phases of

the program.

The change control process was well structured

and key documents (related software develop-

ment plans, design specifications, and test plans)

were baselined to easily accommodate changes to

the customer requirements.

Each flight control computer had two Honeywell

HDP-5301 digital processors. The software was writ-

ten in HDP-5301 assembly language which consisted

of a 59-instruction-set architecture. It was a unique

instruction set and did not represent a microproces-
sor standard. Calculations were mixed between fixed-

and floating-point operations of single and double pre-

cision. The processor had a mode to prevent regis-



teroverflow. Theoperationalflightprogram(OFP)
ineachFCCconsistedof 205totalmodules(approx-
imately29,000instructions)utilizing approximately
2200variablesand3000constants.Executionof the
OFPineachprocessorwascontrolledbyasoftwareex-
ecutiveratestructureasopposedtoaninterrupt-driven
control.Thememoryorganizationof theOFPcon-
sistedof localizedvariablesandconstantsusedonly
intemalto amodule.It alsohadcommondatareposi-
toriesusedbytwoormoremodulesformajorfunctions
suchassignalselectionandredundancymanagement,
modelogicandfault reaction,andpilot IBITswhere
commonvariableswereheld.

Eachmodulecontaineda moduleheaderwhich
identifiedthemodulebynameandnumber,described
thefunctionof themodule,listedin tabularformby
datethemodulechangehistoryalongwith the au-
thor,andlistedtheinputsandoutputs.Thedesign
for eachsoftwaremodulewaswrittenin a loosely
structuredprogramdesignlanguage(PDL).Themod-
uledesignwasincludedwitheachmoduleaspanof
thecomments.

Oncethesoftwareengineerhadcleardesignspec-
ifications,thecodingprocessitself wasa relatively
straightforwardtask. To assistin keepingthecode
structuresusedby differentengineersconsistent,the
projectsoftwareteamestablishedcodingguidelines.
Theseguidelinessuggestedwaystoimplementvarious
codestructuresinanefficient manner. Assembly lan-

guage macros from other projects using the same pro-

gramming language were also used to aid in the cod-

ing process. Once the requirements were defined, the

module was designed and coded, and the module test
was written. A more detailed description of the tests

and test philosophy follows in the initial flight qualifi-

cation software assurance section of this paper.

All of the information applicable to each module

was kept in a unit development folder (UDF) in a cen-

tralized library. The UDF contained the module de-

sign, module code, module test procedure with results,

and applicable engineering information that might be

of interest to an engineer designing or coding an in-

terface with that particular module. The folder also

contained redlined masters of previous versions of the

module as it was changed in the development process.

This allowed a reviewer, for instance, to easily trace

how a change was incorporated.

Along with the formal design specification that was

used to code from, there was also a software descrip-

tion document that described various important aspects

of the software development process and key informa-

tion for the operational maintenance phases. This doc-

ument contained the memory map for each processor

(what was used and whal was spare), how to assem-

ble and link the code for each processor on the engi-

neering workstation, descriptions of major functions

implemented in the software, the design for each mod-

ule, data dictionaries, variable set/used tables, and a

graphical representation of the throughput and worst

case timing analysis for the operational flight program.

Tools

There were numerous software tools that were used

to minimize development time and the probability of
human error. The tools utilized are listed and described

in Table 2. Because of the size and complexity of the

operational flight program, the tools used to help the

developer organize information about the code were

the most advantageous. These included the set/used

tables, data dictionary tool, memory map tool, the Ben-

der chart tool, and the workstation tools.

The Bender chart tool was specially useful because

of the graphical manner in which it conveyed informa-
tion that was otherwise difficult to describe. An ex-

ample of a Bender chart is shown in Fig. 5. The Ben-
der chart tool shows the module execution frequency

(horizontal width) and the minor frames in which the

module was executed (at bottom of chart). It also

presents the worst case timing of each module (verti-

cal length) and shows resynchronization and processor

rendezvous points.

The timing tool was useful for two reasons. First,

an important aspect of any real-time application is
worst case module execution time. This is needed to

make sure available throughput is not exceeded. Sec-

ond, because of the synchronous nature of the system,

channel-dependent paths in the code needed to be bal-

anced. The timing tool assisted the engineer in deter-

mining the execution time of a given path using the

HDP-5301 source code as input.

The set/used tables allowed the developer to quickly

trace a variable's span of influence across the modules

in which it was used.

Another class of tools that proved to be extremely

helpful were tools that assisted the tester. These in-

cluded the data integrity tool, overflow analysis tool,

and function simulation (FSIM) tool.



The data integrity tool was a programming lan-

guage I (PL/I) program that used the HDP-5301 source

code as input. It verified that memory reference in-

structions dependent on processor mode (that is, fixed-

as opposed to floating-point mode) were used after

the processor had been set to the appropriate mode.

Gain scheduling using linear interpolation in fixed-

point mode made it necessary to use the overflow anal-

ysis tool to protect from inadvertent overflow. This

tool checked adjacent gain table breakpoints and veri-

fied that the gain scale factor was large enough to ac-
commodate differences.

The FSIM tool was an interactive program in which

the user would enter various types of control law ele-

ments (that is, lag filters, integrators, time delays) in a

given path and analytically compute the gain and phase

margins at discrete frequencies for that path. These

outputs would be used to compare with actual open

loop frequency response results.

An extensively used tool at the user facility for soft-

ware system testing was the extended aircraft interro-

gation and display system (XAIDS). It was a multi-

processor system which performed several functions:

terminal emulator to the system evaluation unit; patch

generation and transmission to flight conlxol comput-

ers; and display of ARINC 429 bus data from the flight

control computers on a terminal in engineering units,

as well as output of the information as analog signals.

The ARINC 429 display and conversion was particu-

larly useful, since it was the only way to display inter-

nal software parameters in real time.

The tools used on the X-29A program played an im-

portant part in developing quality software.

Software Assurance

Software assurance is a series of processes whose

goal is to deliver error-free, maintainable software. It

includes software design standards and practices (de-

scribed above), configuration management, reviews,

test philosophy, software verification and system vali-

dation, and media production and control (that is, ob-

ject tapes and source tapes).

Configuration Management (CM). This process

assures that the system configuration and problem sta-

tus are known, documented, and traceable. It is an

essential process throughout the life of a complex

system, especially one which is software intensive.

Configuration management consists of two major pro-

cesses: (1) change control, and (2) discrepancy re-

porting and correction. Change control is the process

by which design or implementation changes are de-

fined, implemented, tested, and incorporated in a new

baseline software release. Discrepancy reporting and

correction is the process by which design or imple-

mentation anomalies are reported, assigned criticality,

and closed out after correction (through the change

control process).

The CM process of each contractor interfaced with

the other such that software configuration and discrep-

ancies were known and traceable. The prime contrac-
tor used a software control board to authorize control

system design changes, trace software releases, and

track discrepancy reports. Its activities were limited

to the flight control system hardware and software.

The software developer used intemal documentation to

track discrepancies and perform change management.

The customer configuration control board operated in

parallel with the contractor software control board, in

an advisory capacity only.

Reviews. Reviews were held at all levels of devel-

opment. Figure 4 shows the developer review guide-

lines. Module design, code, tests, and test results were

subject to peer review. Integration tests and results

were also reviewed by lead engineers. The prime con-
tractor, whose personnel were resident at the software

developer's facility, conducted a formal review of the

module tests. The customer, whose personnel were

resident at the prime contractor's facility, reviewed

tests conducted by the prime contractor. Both the con-

tractor and the customer held flight readiness reviews.

Test Philosophy. Flight software undergoes two

types of testing activity during the process of flight
qualification: verification and validation. Verification

is the process by which determination is made that

the software performs as specified. It is accomplished

by devising individual tests for each specified soft-

ware task, conducting the test, and observing that the

task was accomplished according to the specification.
Validation is the broader task which seeks to deter-

mine if the system, of which the software is a part,

performs adequately to accomplish the flight require-

ments. Failure modes and effects tests (both open loop

and closed loop) are among the techniques used in soft-

ware validation. In these tests, failures are artificially

induced and a proper system response to those failures
is verified.

The critical nature of the software (capable of caus- •

ing loss of life or aircraft) dictated that a maximum



levelof testingwithin the resourcesof theproject
beaccomplished.Systemdesignreflectedthecrite-
rionthattheaircraftbeabletoreturnsafelyafterany
two failures(fail operational/failsafe). Verification
testsincludedsoftwaresystemintegrationaspectsas
well as individualsoftwaremoduletesting.Valida-
tiontestsconcentratedonthemostcriticalelementsof
thesoftware,thatis,controllawsduringnormalopera-
tion,faultreaction,modelogic,andsensorredundancy
management.Tominimizetheriskof undetectedsoft-
wareerrors,independentverificationandvalidation(V
andV) testswererun in additionto thecontractor's
V andV testing.Thephilosophywasto gainsystem
experiencein themostrealisticallysimulatedenviron-
mentpossibleto increaseconfidencethatthesystem
wouldperformasexpectedin therealworldenviron-
ment.Thepossibleknowncombinationsof realworld
stimuliaretoonumerousto analyzecompletely.The
morea systemis testedin a simulatedenvironment,
themoreunlikelyit becomesthatgenericfaultswill be
discoveredduringflighttest.Theuseof experienced
softwareandsystemspersonnel in these areas of the

process was very cost effective.

Software Verification and Validation. Verifica-

tion and validation tests were performed by the con-

tractors in the initial flight qualification phase.

The subcontractor partitioned his verification testing

into three phases: (1) module testing, (2) intemal inde-

pendent review, and (3) systems testing. The rationale

for phase one module testing focused on two major

points. First, the module test was to verify that the code

reflected the intent of the module design. The module

test did not test the function of the module as part of

the system as a whole. Second, the module test exer-

cised all code paths at least once and, where applicable,

tested minimum and maximum input values. In the

case of complex modules, the module test contained a

description explaining the test cases. Phase two con-

sisted of a subcontractor's intemal independent gen-
eral review of the software structure, module inter-

faces, system requirements, and planned test coverage.

Phase three consisted of the systems-level tests with

the software and hardware integrated. System per-

formance was tested against the system requirements.

The majority of the system-level tests run on the con-

trol law processor consisted of open loop frequency

responses of the control law paths. Other tests run

were gain table X-Y plots, variable warmstart analysis

(occurred when a computer was reset), and an over-

flow analysis.

Most validation tests were performed using a six-

degree-of-freedom hardware-in-the-loop simulation at

the prime contractor facility. This simulation included

three FCCs using the flight software under test, a fail-

ure status control panel similar to that in the aircraft,

and in some cases electro-hydraulic actuators driv-

ing simulated control surfaces. Flying quality evalu-

ations of the unfailed system were conducted at speci-

fied points throughout the flight envelope in all of the
control modes. Failure modes and effects tests, which

tested flying qualities as well as system response and

annunciation during mode changes and simulated con-

trol system hardware failures, were conducted. Time

history and frequency responses were generated. Sim-

ulation results were compared with those predicted an-

alytically, and data on stability margins was obtained.

A five-degree-of-freedom simulation, with the actual

aircraft in the loop, was used for some validation tests.

For example, during limit cycle tests, the control sys-

tem gain margins were examined.

Independent Software Verification and Valida-

tion. The customers (NASA, Air Force, and Navy)

performed independent V and V test sequences

using NASA Ames-Dryden's six-degree-of-freedom

hardware-in-the-loop simulation, as shown in Fig. 6.
This simulation included three FCCs, a failure sta-

tus control panel, and an analog computer model of
surface actuators. Some contractor tests were re-

peated, and customer-generated validation tests were

run. These tests were of the same types as those run

at the contractor facility, but they used different hard-

ware, simulation system, and test procedures. Testing

from a second perspective, using a different test facil-

ity, minimizes the risk of undetected errors. This risk

reduction is the value of independent V and V. For ex-

ample, it was discovered during these tests that certain

dual-rate gyroscope failures to null caused loss of air-
craft if the first failure was undetected.

Operational Maintenance

Changes in Organization and Responsibility

Official delivery of the aircraft, with a limited flight

envelope, occurred after flight number four. The cus-

tomer then assumed responsibility for the aircraft, and

for flight safety. The contractors continued participa-

tion in design changes, and were responsible for design

and V and V of the full envelope control system. Ex-

cept for the first major modification done to the control

laws (full envelope release), validation testing was the



responsibilityof the customer and verification testing

was shared by contractor and customer.

Software Development

When changes to the design specification were re-

ceived by the developer, he chose a method of imple-

mentation based on the complexity and form of the

change being requested. This decision affected the

testing process both at the developer and customer fa-

cilities. The four methods of implementation that were

used will be discussed in order of increasing complex-

ity. The testing path for each of the implementation

methods is illustrated in Fig. 7.

Overlay. Only simple changes of values of con-

stants were incorporated by overlay. In this method no

source code was changed. The FCC program was not

reassembled. Flight control computer program mem-

ory was loaded with the baseline release. The FCC

memory was then altered to incorporate the changes,

and the contents of its program memory (not just the

changes) were re-recorded to a new tape containing

the new software release. This type of implementation

required the least amount of retest. Overlay changes

were retested on each subsequent release until a release

was implemented by relink and tested.

Permanent Relink-Without-Relocation. Only

simple constant changes were incorporated by perma-
nent relink-without-relocation. In this method source

code was changed, but the change did not result in

any code relocation. Thus, no instruction addresses

changed from the previous release. Affected modules
were reassembled and all modules were relinked. This

method required the same amount of testing as an over-

lay change. No retest of the change was required on

subsequent releases as the change was permanent.

Relink-Without-Relocation. Simple structural

code changes were generally implemented by using

this method. Source code was changed in such a way

that code downstream of the change was not relocated.

The changed modules were reassembled and all mod-

ules were relinked. Added code was put in a desig-
nated unused area and called from the modified mod-

ule by way of branches inserted in-line so as not to re-

locate any other code. This method was used when it

was desired to minimize the level of testing. It is sec-

ond to relink-with-relocation in terms of the amount of

testing required. Changes implemented by this method

were retested when the code located in the patch area

was put in-line by way of relink-with-relocation.

Relink-With-Relocation. In this method, source

code was changed and all modifications were made in-
line. The affected modules were reassembled, and all

modules were relinked. The term "with relocation" in-

dicated that in the process of adding or deleting code,
other code was relocated. As a result, the addresses

downstream of the change were no longer the same as

in the previous release. This method was used for ma-

jor structural changes and when a new, unadulterated

baseline was desired. As in all changes made by relink,

object code was downloaded to the program memory

in the FCC and the program memory contents were

then recorded onto a cassette tape. Of the four meth-

ods used to implement a change, this method required

full regression testing.

Tools. Various tools which have become avail-

able since the initial software development, along with

those discussed in the initial development section of

this paper, were used during software development

and test at the developer's and the customer's facili-
ties. These are listed in Table 2 as used in the mainte-

nance phase.

The configuration control tool was a developer soft-

ware library manager which tracked module source

code revisions and prevented any module from being

modified by two programmers at the same time.

The spare memory tool was used by the developer to

document unused program memory. This information

provided statistical data on percent memory usage, as

well as specific information on memory available in

patch areas for use in a relink-without-relocation.

Checksum tools were used by the developer and the

customer to partially verify that the download of ob-

ject code to flight computer memory from the assem-

bler/linker was successful. Checksums were calcu-

lated from the output of the linker for comparison to

those calculated by the system evaluation unit (SEU)

from flight computer memory.

The SEU interface utility is a personal computer

program, developed by the customer but also used

by the flight software developer, in which the per-

sonal computer is a front end to the system evaluation

unit. Normal and enhanced terminal functions are per-

formed; however, additional menu-driven capability

includes saving the terminal keystrokes and responses

on a disk file, creating flight computer patches, saving

them to disk file, and sending them to the flight com-

puters (in any combination of channels), starling and

stopping the processors, and computing checksums.



Newtoolsto enablethecustomerto do thesource
comparisonsrequiredin releases produced by relink-

with-relocation include tape reading tools, which un-

pack and sort developer source code tapes so the infor-

mation can be saved on disk, and a source file compar-

ison tool, which does the source comparison between

two disk files and then prints the differences.

The overplot tool allows the customer to plot test

data over reference data on a hard copy. Time histories

and frequency response gain and phase are routinely

overplotted as part of software system validation.

The XAIDS was equipped to retransmit ARINC 429
bus data from the three FCCs to the simulation com-

puter on a single 1553 bus.

Software Configuration Management

Configuration management responsibility was as-

sumed by the customer upon aircraft delivery. Prime

contractor internal configuration management re-

mained active, but with decreasing project responsi-

bility. Subcontractor configuration management re-

mained essentially unchanged.

Configuration Control Board. The configura-

tion control board met at the customer facility and

was chaired by the customer project manager or a de-

signee. The board was composed of technical experts

from all program disciplines involved in flight safety

and research. Membership included representatives

of all governmental and contractual organizations in-

volved with the aircraft. Disciplines included flight

operations, flight controls, simulation, acrostructures,

loads, aerodynamics, instrumentation (including on-

board systems, real-time data display, and data reduc-

tion), and flight planning.

The board performed the same functions as the
contractor software control board. These functions

included change control, discrepancy reporting and

corrective action, and risk assesment. However,

in addition to those functions, the board also con-

trolled the entire aircraft, control room, data reduction,

and simulation.

Change Control Process. The X-29A process is

illustrated in Fig. 8. Changes were generated due to

discovered problems (in which case a discrepancy re-

port was written) or because of the addition of new

mission requirements. Configuration change requests

(CCRs) could be written by anyone and were sub-

miued to board membership in advance of the reg-

ularly scheduled meeting. All items handled by the

board were identified and entered into a database sys-

tem to facilitate traceability. The board had several

options on the disposition of new change requests:

(1) hold, (2) retum for analysis, (3) disapprove, or

(4) approve. It could also cancel previously submitted

requests. Items "held" could be resubmitted at a later

date. Items retumed for analysis required clarification

to convince the board that the proposed change was

safe or even necessary. Disapproved changes required

no further board action. The board made technical rec-

ommendations to project management on the disposi-

tion of CCRs. However, management could overrule

decisions they considered beyond the means of project

resources. Anyone on the board could recommend that

a change not be incorporated.

Once CCRs were written, software program change

notices (PCNs) were generated from the CCRs by
on-site contractors who had the most detailed knowl-

edge of the control system architecture and specifica-

tion documents. Program change notices were soft-

ware design documents which had two functions in the

X-29A program: (1) to provide detailed software de-

sign specification changes, and (2) to authorize imple-

mentation of those changes. These documents were

presented to the configuration control board in two dif-

ferent ways: (1) for information only (no approval re-

quired) if the design changes mirrored the CCR from

which it was derived; or (2) for official approval, if the

design differed from the initiating change request. Pro-

gram change notices were identified by the customer

using a hybrid numbering system which consisted of
a customer version number with a contractor version

number appended (that is, PCN 012-2015).

A PCN was delivered to the prime contractor who,

in turn, delivered it to the software developer. The soft-

ware developer then incorporated the change using the

production method agreed on by the customer and on-

site contractor personnel. An engineering change no-

tice containing information on the design, implementa-

tion, testing accomplished, cross-reference to the PCN

for traceability, and developer's identification of the

new software release was generated. The engineering

change notices were then delivered with the final ver-
sion of the software release.

lfa new release was to be generated by overlay only,

the customer had the option to create the new object

tape in-house and begin V and V testing. This tape

would later be compared bit for bit to the final re-

lease tape sent to the customer after the developer had

completed required verification testing. If the tapes



did not compare bit for bit, all testing done on the

customer-created tape would be invalidated and the

process would begin again with the developer's final

tape. When the new release was gcnerated by a method

other than overlay, the customer would receive a pre-

liminary object tape when the developer had sufficient

confidence in the implementation of the new release.

A new software release was delivered to the cus-

tomer by way of the prime contractor. The cus-

tomer then renamed the release to correspond with the

scheme inherited from the prime contractor. On re-

ceipt of the preliminary tape, the customer would start

the V and V process, as shown in Fig. 7. Meanwhile,

the devcloper completed the verification tcsts at his fa-

cility and either delivered a final tape or authorized the

customer to relabel the preliminary tape as a final tape.

Customer V and V would continue until all required

tests were complete. System test reports (customer test

results which had bccn reviewed by a cognizant engi-

neer) were thcn presented to the configuration control

board for test acceptance and configuration change re-

quest closeout. It was the duty of the customer soft-

ware manager to ensure that all configuration changc

requests implemented in a new rclcase had been closed
before the release was flown.

Discrepancy Reporting and Corrective Action.

Discrepancy reports were generated when an occur-

rence was not expected or was considered unsafe by

cognizant personnel. Discrepancies could be unex-

pected test results or a problem uncovered during nor-

mal flight operation. They were submitted to and pro-

cessed by the configuration control board in the same

fashion as configuration change requests. Discrep-

ancy reports were presented to the configuration con-

trol board when: (1) the discrepancy report was ini-

tially submitted for acceptance (agreement that it was

in fact a discrepancy) and assignment of criticality;

and (2) for closeout, after corrective action and test-

ing had occurred, or when another justification existed
for closeout.

Criticality was assigned to each discrepancy report

based on the possible effect the discrepancy had on

flight safety and research mission accomplishment:

Criticality of 1, flight critical, indicates possible loss

of life or the aircraft; criticality of 2, mission critical,

indicates that a research objective could be lost; and

criticality of 3 was assigned to those which fit neither

criticality of 1 nor criticality of 2. Discrepancies with

criticality of 1 had to be closed or (if the discrepancy
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was sufficiently improbable, difficult to fix, and able

to be monitored) put on a project accepted risk list be-

fore the aircraft was flown. The accepted risk list was

reviewed at a briefing prior to each flight. Lesser crit-

icality software discrepancies did not prevent the air-

craft from flying and were fixed at a convenient time.

Mission critical discrepancies would keep the aircraft

from flying if pilot procedures could not compensate

for the problem.

Closeout of discrepancy reports was based on

changes which had gone through the change control

process and had been verified to correct the discrep-

ancy. Discrepancy reports were also closed out be-

cause they were no longer applicable. For instance,

reports of discrepancies occurring in a certain flight
control mode were closed out when that mode was re-

moved from the control system. If a discrepancy could

not be corrected for any reason, that discrepancy report

remained open.

There was a separate, but sometimes overlapping,

discrepancy mechanism utilizing the aircraft logbook,
which was used for routine maintenance and hardware

replacement.

Software Assurance

Reviews. Software developer intemal reviews

continued as before in the operational phase. Prime

contractor reviews of developer verification tests were

ended. Flight readiness reviews of new software were

generally included as part of the technical briefing held

before the first flight with a new release. The technical

briefing also included a description of changes and a

summary of any open discrepancies.

Test Philosophy. The scope of the software devel-

oper verification tests was based on the method of pro-

duction by which the modules were changed. As in the

initial flight qualification of any new software release,

the more system tests that were performed, the more

the confidence in the system grew.

The customer always conducted a functional veri-

fication test on each change to close the CCR from
which it was authorized. It was never assumed that

the contents of a delivered object tape to be used for

flight was correct. The tape contents were loaded

into FCC memory. Memory was then verified to have

the expected numbers (per documentation supplied) in

the checksum locations, and the rest of memory was

checksummed with the results compared to the ex-

pected checksums. This process verified that the object



tapemediahadnotbeenalteredduringtransitfromthe
developer. After a bit-for-bit comparison to the previ-

ous software release, a second flight object tape was

created from memory loaded with the delivered copy.

This comparison verified (for most methods of soft-

ware production) that the correct changes, and only

the expected changes, were incorporated in the new re-

lease. The magnitude of validation testing, and the de-

cision whether to perform independent V and V, were

based on: (1) safety of flight implications of a design,

specification, or implementation error in the changes;

(2) the number and complexity of changes; and (3) the

method of production.

Software Verification and Validation. The scope

of the developer's verification testing ranged from

module tests only for nonflight critical software

changes, to module and full integration tests for flight

critical changes.

Customer testing is illustrated in Fig. 7, Soft-

ware/system verification and validation process. The

first three steps shown in the figure were always done,

followed sequentially by V and V tests based on

method of production, optional validation steps based

on safety implications and complexity of changes, a

mandatory five hours of simulation by a project pilot

using the new release, and ending with a document re-

leasing the new software for flight. A brief explanation

of the tests noted in Fig. 7 follows.

New Tape Verification Process was an object tape

media test which assured the customer that the tape

contents were the same as noted by the developer dur-

ing tape recording. It also verified that the proper

changes were implemented (except for tapes produced

by relink-with-relocation). It included copying the

original tape to have a second flightwonhy tape for

backup, pending successful completion of V and V

testing. A nonflight simulation tape was recorded, in

which a patch was included. This patch disabled in-

structions to write to FCC nonvolatile memory, which
had hardware constraints on the number of writes be-

fore mandatory replacement. This was considered im-

portant since simulation computers could, after accep-

tance testing, be used on the flight vehicle. The sec-

ond purpose of the patch was to disable monitoring of

a nonvital-simutated sensor, the attitude heading refer-

ence system, when the simulation was not in operation.

Without the patch, this simulated sensor was usually
declared failed when the simulation was reset, caus-

ing operational problems and altering failure mode
test results.
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Standardized Test Matrix verified in a gross man-

ner that the new software communicated with the FCC

hardware over a large subset of flight computer in-

puts and outputs. Regardless of the method of produc-

tion, each change was functionally tested to close its

CCR, using the CCR and the PCN to define the test re-

quirements. In all production methods, previous over-

lays were retested. Relink-with-relocation required

retest of software coded in-line for the first time, and

two steps to verify that the correct software changes

were incorporated. The first step was to produce the

new release at the customer's facility from a source

tape received from the developer. The object code

was bit-for-bit compared with the object tape received

from the developer, which verified the integrity of the

source tape. Source code from the verified tape was

then compared with the source code of the last release.

The differences verified that the proper changes were

incorporated.

The change documentation lifecycle is complete;

however validation testing of the release containing

the change must be accomplished successfully before

it can be used on the aircraft. Validation tests depen-

dent on method of production included time histories

and frequency responses, where relink-with-relocation

required the full set. In practice, the full set of time

histories and frequency responses was run on all new

releases where time histories are required, since those

tests have been partially automated.

Additional time histories and frequency responses

have been required on releases with specific control

law changes. The use of failure modes and effects

tests, and the scope of the tests, depended on safety

implications and complexity of the changes.

When all V and V was successfully completed, a

software release document was prepared which autho-

rized the new software release for flight. It described

all changes incorporated in the new release, listed rel-

evant CCRs, PCNs and system test reports (STRs),

and briefly described tests accomplished by the devel-

oper and by the customer. All discrepancy reports gen-

erated during testing were listed with their criticality

and their status (open or closed). The software release

document was published as an X-29A internal docu-

ment and distributed to project personnel. For each

flight day, which may consist of several flights, a flight

tape release form was signed by the customer software

manager, the aircraft operations engineer, and an in-

spector. It contained flight numbers for which it was
valid, the release identification of the software to be



used,thechecksums, as well as statements that all re-

quired testing had been accomplished, that the tape

was suitable for flight, and that the tape was loaded

properly on the aircraft FCCs.

Independent Software Verification and System

Validation. Three major control system changes

since aircraft delivery resulted in independent V and

V efforts. Those tests were devised and run by gov-

ernment personnel (when the V and V was done by the

prime contractor for expanded envelope), by the prime

contractor, and by non-NASA govemment personnel.

Parallel Activities

The change process was shortened by subcontractor

and customer working in parallel. The greatest time

saving was in software test. The software developer

sent a preliminary object tape to the customer after par-

tial testing, allowing customer V and V tests to be run

in parallel with the remaining developer verification.

When a problem requiring a second preliminary re-

lease occurred, full retest was generally not required

at either the developer or customer facility; the prac-

tice of sending preliminary tapes saved time even if

changes had to be made. At times, V and V could also

be accomplished in parallel with an independent V and
V effort.

The customer could produce a new object tape by

overlay in parallel with the developer generating the

same release by overlay or permanent relink-without-

relocation. Integrity of the customer-generated tape

was ensured by a bit-for-bit comparison with the tape

received from the developer. Customer V and V could

begin as soon as the procedure for overlay tape gener-

ation was complete. Changes of this type which also

required minimum validation testing have been im-
plemented, tested, and released for flight in less than
one week.

Dryden Simulation Facility

Facility Description

One of the best investments that the X-29A program

made was in the simulation capability at NASA Ames-

Dryden Flight Research Facility, where the flight test

program was conducted. The major cost impact was

the hardware-in-the-loop simulation in which certain

flying qualities can be evaluated, and where a large

subset of the possible subsystem failures could be sim-

ulated using actual flight hardware and software. This

capability enabled the customer to perform large-scale

independent V and V testing prior to first flight and
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prior to expanded envelope flight, and to perform the

V and V testing of changes made during the flight

test program.

This simulation was also used to test preliminary

software designs, and for pilot training. It included

the simulation computer (equipped with a large num-

ber of discrete and analog inputs and outputs), three

FCCs, a failure status control panel (an X-29A cockpit

panel), an interface console (signal conditioning, and

test points tied to all pins of the FCC signal connec-

tors for all three channels), an analog actuator model

(analog simulation of the surface actuators, including

failure detection and operational modes), a SIBLINC

(signal conditioning for simulated sensors), and the

XAIDS (a microcomputer device which emulated a

terminal into flight computer test hardware, and which

displayed in engineering units the digital data out-

putted from the three flight computers for downlink).

All-FORTRAN real-time and batch simulations

were used for control system checkout and to produce

reference data against which flight software was val-

idated. The real-time simulation required simulation

cockpit hardware and limited simulation computer in-

put and output interfaces; and the batch simulation

required no external hardware. They were indepen-

dent implementations of the same specifications from
which the FCCs were coded.

Automated Testing

An initial capability of automated testing was res-

ident in the simulation facility. It is envisioned that

this capability will be greatly expanded when Dryden's

Integrated Test Facility, now under construction, be-

comes operational.

The test capability included many useful features.

Commands to the simulation program could be in-

putted from a test script and saved as a text file on disk

rather than from a terminal. Each analog and discrete

input and output of the simulation could assume three

independent values, changing value at times read from

an internal clock whose resolution was 12.5/zs. A sine

wave sweep generator, whose beginning and ending

frequencies and amplitudes were controllable, could

be summed with any of the analog inputs or outputs.

Using these capabilities, simulated switches could be

operated, simulated sensors could be failed, and fre-

quency response data could be obtained.

The X-29A program incorporated automated test

features as they became available, and when hardware
constraints allowed. Interface modifications to the



hardware-in-the-loopsimulationwereincorporatedto
maximizethe abilityof the simulationcomputerto
controlanaloganddiscreteinputstotheflightcontrol
systemhardwareusedin thesimulation.TheStandard-
izedTestMatrix (thetestof flight controlcomputer
inputsandoutputs)andtimehistoriesandfrequency
responses,whoseoverplotsto referencecaseswere
usedto determinecorrectnessof controlsystemop-
eration,werepartiallyautomated.Failuremodesand
effectstests,in whichsimulatedsubsystemfailures
wereintroducedduringreal-timeoperationat known
flightconditions,havenotyetbeenautomated;how-
ever,with theproposedincorporationof anouterloop
autopilot,automationwouldbecomepractical.

Reductionof testdatawasdoneonacomputerother
thantheoneusedforreal-timesimulation.Datatrans-
ferbetweenthesimulationcomputerandtheoneused
for datareductionis a technicalproblemcurrentlyin
work.Ideally,onecomputerwouldcontrolthetestex-
ecution,datatransfer,anddatareductionin anauto-
matedsequence.Thishasbeenaccomplishedin alim-
itedfashion,butthecapabilityisnotyetoperational.

Theverificationof properchangesin releasespro-
ducedby relink-with-relocationinvolvedassembly
andrelinkofsourcecode,andsourcecomparisonwith
apreviousrelease.Theseoperationsusedthesoftware
productionandsourcecomparecapabilitiesresidentin
thesimulationfacility.

A personalcomputerwasusedtospeedtheprocess
of FCChardwareacceptancetesting,by calculating
pass/failstatus,andrecordingdataondisk.It wasalso
programmedasa terminalemulatorandfrontendto
theFCCinterfacehardware,theSEU.In additionto
thenormalfunctionsof adumbterminal,arecordof
terminalinputsandoutputscouldbesavedondisk,and
softwarepatchescouldbewritten,savedondisk,and
senttotheflightcomputers.

Observations and Recommendations

The X-29A program was strictly a research cffort;

therefore, some of the problem areas were unique to

that environment. Most were typical of problems

which may be encountered in any critical software de-

velopment and maintenance effort.

The organization having responsibility for hands-on

operation and maintenance of a complex software sys-

tem (that is, a user organization) should, from program

inception, recognize several management and techni-

cal issues. Most of these issues were recognized by the

X-29A program. Issues will be stated in the context of

a generic program which has a software developer or-

ganization and a user organization.

All parties should agree to documentation and con-

figuration management standards at the beginning so

configuration control can be passed from the devel-

oper to the user on delivery. The X-29A situation of

two numbering systems for PCNs, and for software re-

leases, illustrates this problem.

In order to facilitate design and test activities, ini-

tial system requirements should include system test in-

terfaces which provide access to hardware and soft-

ware internal parameters. These parameters should

be randomly accessible without interrupting real-time

operation, and be displayed as either raw data or en-

gineering units. The capability to stop the proces-

sor at will should be implemented, with multiple safe-

guards against inadvertent halts during normal opera-

tion. The test interfaces should have the capability of
test automation.

Initial Flight Qualification Phase

It was reaffirmed during operational maintenance

that some of the most helpful coding guidelines are as

follows. Straightforward coding is more cost-effective

than coding that is difficult to understand and to mod-

ify. This is true even if the unorthodox code uses hard-
ware or software features that make it more efficient.

Documentation which adds to the readability of the

code (PDL) and meaningful comments is highly de-
sirable. Variable names should be chosen with care

and should reflect the variable's function.

Configuration management activity (change control

and discrepancy reporting) at the developer facilities

should be closely monitored by the user. Developer

and user documentation should be compatible to allow

smooth transition of responsibility from the developer

to the user at delivery.

Technical personnel from the user organization

should actively participate in developer system inte-

gration, and in V and V test activities. This was done

with the X-29A program, and the knowledge gained

was invaluable. User and developer should realize

up front that integration and testing, with the design

changes they will most certainly produce, consume

more resources (time and money) than is usually al-
lotted for them.

If the system is of a critical nature, an independent

V and V should be considered. This concept was used
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successfully in the X-29A program. It provides gready
increased confidence in the software system. Total in-

dependence infers a different organization generating

and executing the tests using a different facility with a

different implementation of the same simulated exter-

nal environment. In practice, an independent V and V

can be useful with some aspects of commonality with
the V and V activities.

Operational Maintenance Phase

The following recommendations refer to the

user's facility.

Skilled and knowledgeable technical people, includ-

ing both user and developer personnel, should be as-

signed to the operational site and work together as a

project team with a minimum of organizational bar-

riers. Every effort should be made to have systems

and software people who worked on the develop-

ment continue at the customer site, and if applica-

ble at the developer facility, during the operational

maintenance period. Contractor personnel assigned to

Dryden were valuable and respected members of the

X-29A project team.

Rigorous configuration management is required, in-

cluding a configuration control board on which project

management and representatives from all disciplines

and organizations of the technical team participate.

Successful implementation of the configuration man-

agement process relies on a dedicated and knowledge-

able configuration control board, working with project

management who realize the importance of the pro-

cess. An undocumented, but extremely important,

function of the configuration control board is dissemi-

nation of information to the many disciplines involved

in operation of the aircraft; not only the effects of

changes, but knowledge of the deficiencies of air-

borne and ground support systems. All members of

the project team should understand and be involved

with the discrepancy reporting, investigation, and cor-

rective action process. Care must be exercised in use

of parallel discrepancy reporting and correction sys-
tems, such as the aircraft workbook on the X-29A

project. A "routine" maintenance item, such as a throt-

tle lever adjustment, may impact operation of a con-

trol mode, such as precision approach control (PAC).

As part of the change control process, the user orga-

nization should have and exert full authority to direct

the software implementation process to ensure com-

pliance with the decisions of the configuration control

board. This implies direct control over the developer

organization. The user on the X-29A program had

no direct contractual ties to the developer, only with

the prime contractor. At times, the configuration man-

agement process was compromised by the prime con-

tractor modifying or delaying implementation of ap-

proved changes.

Facilities for software system V and V should be

provided at the user site, utilizing as a minimum the ac-

tual computer hardware and software. The test facility

should provide individual control of system inputs, and

capability of monitoring and recording in engineering

units system inputs and outputs. It should be designed

with the maximum automation allowed by the system

under test. In the case of a flight control system, this

requirement is met by a hardware-in-the-loop closed-

loop simulation in which all flight computer inputs are

individually controlled and outputs go to actual or sim-

ulated flight hardware. Simulation constraints should

not force modifications of flight code to enable testing.

From a technical viewpoint, the long-term gains from

such a facility far exceed the cost of its implementa-
tion and maintenance. Most of these criteria were met

by Dryden's X-29A hardware-in-the-loop simulation.

Expanded capability will be available when Dryden's

Integrated Test Facility becomes operational. System

test capability will range from hardware-in-the-loop

simulation (with additional automated test capability)

to aircraft-in-the-loop (iron bird) simulation. The six-

degree-of-freedom iron bird simulation will monitor

actual control surface positions and simulated engine

thrust to provide to the aircraft systems simulated sen-
sor information, which in some tests is summed with

the outputs of aircraft sensors. Flying qualities, with
and without failures inserted, can be evaluated with

the maximum amount of flight hardware and soft-
ware active.

The user should obtain the capability to develop

software in-house. If practical, software development

should transition to the user's facility at delivery, with

on-site developer and user personnel sharing the re-

sponsibility for development. If software development
is done off-site, source code should be transmitted to

the user on a medium which can be utilized by both

the developer and the user. The software development

capability is then required as pan of the verification

that the proper software changes were incorporated in
a new software release.

If unnecessary features exist in critical software, it

may be cost-effective to eliminate those features. A

flight control mode, DR, was removed from the X-29A
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controlsystem.Thebenefitsof theDR modewere
overshadowedby thecostin V andV testresources
requiredtoretestit ateachnewsoftwarerelease.

Late in the flight program on the first X-29A, it

was discovered during validation testing that at certain

flight conditions a within-tolerance air data failure (at
those conditions a failure to null) caused the aircraft to

become unstable. This pointed out a deficiency in the

test philosophy up to that time. Previously, the sim-

ulated aircraft flying qualities had been tested under

nominal conditions, and with single and multiple sub-

system failures to null or hardover. It became obvious

that a series of tests with subsystem outputs in error

by just under the failure tolerance should be required.

This type of testing has since been implemented on the
X-29A aircraft, and is recommended for other applica-

ble systems.

Concluding Remarks

The X-29A program illustrates that a complex,

software-intensive, software-critical system can be

successfully developed, flight qualified, and main-
tained under less than ideal programmatic conditions.

Multiple organizations with diverse backgrounds were

intimately involved in the development and change

processes. The limited manpower in the software area

during development was further reduced during oper-

ational maintenance.

All participants in software system development and

maintenance recognized the importance of the fol-

lowing software assurance processes: software de-

sign standards, reviews, change control, discrepancy

reporting and correction, and verification and valida-

tion testing. The software system test facility at the

user facility was utilized in the development of design

specifications as well as for verification and valida-

tion testing.

Tools used by and developed for the X-29A pro-

gram reduced the probability of error and increased

the productivity of software development and test per-
sonnel. The autotest capability proved to be very use-

ful in shortening the time required to complete numer-

ous tests which were always repeated following a con-

trol system change. The lack of a centralized project
database to store the vast amounts of information as-

sociated with complex software-critical systems hin-

dered both the development and maintenance phases.

The success of the X-29A software system is the

result of several factors: Overall good cooperation

of the prime contractor and the software developer

with NASA Ames-Dryden Flight Research Facility,

the user organization; the technical expertise of the

control law designers and the software developer; the
technical excellence and teamwork exhibited by the

various contractor and customer software and systems

personnel assigned to Dryden; the high-quality soft-
ware validation test facilities at the prime contractor

facility and at Dryden; project management support

of the configuration management process; and project

management support of the software test team.
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Table1.The X-29A flight control modes.

Control

modes Option Function Description

Normal Normal Variable gains based on airspeed, altitude,

flight Mach number, angle of attack. Digital

implementation. Pilot selectable.

ACC

MCC

Speed

stability

Degraded
modes

Automatic camber control (ACE') continu-

ously trimmed flaps to maintain optimum

performance. Pilot selectable.

Manual camber control (MCC) positioned

the flaps at discrete positions and held

them fixed as long as the canard was

operating within its acceptable range. Pi-
lot selectable.

A pilot aid to maintain constant airspeed.

Automatic below a defined airspeed, pilot
selectable above.

Adaptations of the normal mode control sys-
tem to loss of certain sensors. Automatic.

Normal PA Takeoff and Power approach (PA) gains. Automatic when

landing pilot selects landing configuration.

Precision approach Precision Autothrottle mode which controlled airspeed,

control landing allowing the pilot to control flight path

angle with the pitch stick. Pilot selectable
in normal.

Digital reversion

UA

PA

Normal flight A backup mode using reduced sensor comple-
ment. Pilot selectable and automatic down-

mode from normal with certain failures.

Up-and-away (UA) gains. Pilot selectable.

PA gains. Pilot selectable.

Direct electrical link Ground Control system mode automatically selected

operation when weight was on any wheel.

Analog reversion Analog backup Backup control system implemented in

analog hardware (the only mode not imple-

mented using software). Pilot selectable or

automatic downmode from digital modes
with certain failures.

UA UA control system with gains scheduled on

impact pressure. Pilot selectable.

PA PA control system with fixed gains. Pilot
selectable.
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Table2. Tools used during software development.

Tool Phase used in Description
5301 assembler

5301 link editor

Downline load tool

Workstation tools

Data dictionary tools

Data integrity tool

Overflow analysis tool

Set/use table

Bender chart

Memory map tool

Timing tool

Spare memory tool

Checksum program

Development
and maintenance

Development
and maintenance

Development
and maintenance

Development
and maintenance

Development
and maintenance

Development
and maintenance

Development
and maintenance

Development
and maintenance

Development
and maintenance

Development
and maintenance

Development
and maintenance

Maintenance

Maintenance

Assembles 5301 source code.

Links 5301 object code to create flight
code.

Transfers flight code from/_VAX to flight

computer.

DEC Control Language (DCL) programs
to facilitate human interface with 5301

assembler and link editor on the

/zVAX II workstation.

These tools helped create and maintain

a listing of all the control law proces-
sor variables. Units, scale factors, data

types, and description.

This tool traced program execution in

the source code and verified proces-

sor mode (floating point, single pre-

cision, double precision, etc .... ) be-

fore execution of a memory reference
instruction.

Tool to look at adjacent entries in gain

tables to verify that the difference
between them would not cause an over-

flow in the processor.

Listing of which module sets and/or uses
a variable.

Graphical display of processor through-

put and worst case module execution

time in #s.

Generates listing of all variables and their
addresses.

Computes path execution time using
source code.

Looks at assembled version of code and

determines locations of spare memory.

Computes checksums of linked flight

code to compare to the checksums gen-

erated by the SEU. The SEU is the in-

terface to the flight control computers.
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Table 2. Concluded.

Tool Phase used in Description

Configuration control tool Maintenance An online configuration management tool

to safeguard flight code from acciden-

tal updates, etc .... Acts as a "librar-

ian" to the flight code modules.

Function simulation (FSIM)

SEU interface utility

Overplot tool

Autotest capability

Development
and maintenance

Maintenance

Maintenance

Maintenance

XAIDS Maintenance

Source comparison tool

ASCII file tools

Tape reading tools

Maintenance

Development
and maintenance

Maintenance

Generates phase and gain values at dis-

crete frequencies given elements in a

software path.

Macintosh program for a front end to the
SEU.

Generates control files for the plotting

program to overplot 5301 and FOR-

TRAN time history runs.

Automatically collects time history

and frequency response data for

plotting. Automatically generates

sensor failures to check redundancy

management.

Extended aircraft interrogation and dis-

play system. User interface to the
SEU. Also converts ARINC 429 bus

data to 1553 data for use by simulation

computer.

Compares two large source files and

prints differences.

Tool to take out tabs, put in tabs, various

other ASCII file manipulations to facil-

itate printing, archiving (on tape), and

editing of large files.

Unpacks and sorts Honeywell source

code tapes.
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